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Abstract

Motivation: Biomedical researchers working on a specific disease need up-to-date and unified access to
knowledge relevant to the disease of their interest. Knowledge is continuously accumulated in scientific
literature and other resources such as biomedical ontologies. Identifying the specific information needed
is a challenging task and computational tools can be valuable. In this study, we propose a pipeline to
automatically retrieve and integrate relevant knowledge based on a semantic graph representation, the
iASiS Open Data Graph.
Results: The disease-specific semantic graph can provide easy access to resources relevant to specific
concepts and individual aspects of these concepts, in the form of concept relations and attributes. The
proposed approach is applied to three different case studies: Two prevalent diseases, Lung Cancer
and Dementia, for which a lot of knowledge is available, and one rare disease, Duchenne Muscular
Dystrophy, for which knowledge is less abundant and difficult to locate. Results from exemplary queries
are presented, investigating the potential of this approach in integrating and accessing knowledge as an
automatically generated semantic graph.
Availability: The source code for the platform developed in Java and Python is available in GitHub∗.
Contact: tasosnent@iit.demokritos.gr

1 Introduction
A lot of biomedical knowledge is published every day in the literature
and structured forms like biomedical ontologies. It is a challenge for
biomedical experts to identify and process all available knowledge. For
example, 1.8 million citations were added to PubMed during 20171, which
corresponds to more than three citations per minute. Not all published
literature is relevant to the work of every researcher and identifying
the relevant articles can be challenging. Efficient access to relevant
knowledge is crucial and simple term-based search can retrieve irrelevant
documents, e.g. due to homonyms, or miss relevant documents because
some synonyms, abbreviations or mismatch of terms between the query
and the relevant documents.

Much effort has been made to address this issue, including semantic
search approaches that use predefined concepts which can have several
associated synonyms and relations with other concepts, expanding the

∗https://github.com/tasosnent/Biomedical-Knowledge-Integration
1 Statistical Reports on MEDLINE/PubMed Baseline Data, available at
https://www.nlm.nih.gov/bsd/licensee/baselinestats.html

query terms. PubMed is the main knowledge resource considered for
biomedical literature and a variety of search tools have been proposed
to search in PubMed as described in Lu, 2011. PubMed supports semantic
search based on the Medical Subject Headings (MeSH) hierarchy2. A team
of curators in the U.S. National Library of Medicine (NLM) continuously
annotates articles added in PubMed with the appropriate MeSH terms that
represent the topics of the article. Information systems can exploit these
topic annotations for information retrieval and extraction of knowledge
in the form of relations between MeSH terms. An overview of systems
following this approach is available in Zhang et al., 2014.

Gathering a set of articles relevant to a topic of interest is often not
sufficient. An article may contain different pieces of knowledge, which
are more or less relevant to the interests of a researcher. Additionally,
the value of these knowledge items can change, if they are combined
with information from other articles or resources. A knowledge base
supports this process of organizing and storing domain knowledge, in order
to be easily accessible. A biomedical knowledge base, like DrugBank
(Wishart et al., 2008), often consists of knowledge which has been
manually reviewed by domain experts. Such manually curated knowledge
bases require human effort for their creation and maintenance, which is

2 https://www.nlm.nih.gov/mesh/
© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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usually supported by computational tools. Hence, automated extraction
and integration of knowledge plays a key role in efficiently managing the
continuously growing biomedical knowledge.

Biomedical knowledge is often extracted from literature in the
form of relations between biomedical entities. For example protein-
protein interactions or gene-disease associations. A variety of text-
mining approaches has been proposed for this task, including term
co-occurrence in the literature and approaches based on syntactic analysis
of articles. Rebholz-Schuhmann et al., 2012 presents a review of text-
mining techniques that have been applied to the biomedical domain so
far.

One of the most systematic approaches to integrating biomedical
knowledge automatically extracted from literature is provided by the
Semantic MEDLINE web application, in the context of the Semantic
Knowledge Representation (SKR) project3 of the NLM. Utilizing this
tool, biomedical researchers have uniform access to knowledge from
MEDLINE abstracts matching their queries, in the form of a graph.
The extracted knowledge is retrieved from the latest version of the
SemMedDB database and is visualized as a network of concepts linked
by a range of relations. The user can browse this network to discover
the information needed as described by Rindflesch et al., 2017. Another
recent effort to biomedical knowledge integration is the Hetionet4 which
exploits the power of graph databases to integrate knowledge from a
variety of resources as a heterogeneous network. This work focuses on
structured manually-curated resources. Hetionet incorporates literature
mining, focusing on a limited number of relations extracted through
co-occurrence analysis from the MEDLINE corpus. The knowledge in
Hetionet can be accessed through graph queries which can effectively
target combinations of multiple relations between entities, in order
to support complex tasks such as computational predictions for drug
repurposing (Himmelstein et al., 2017).

2 Approach
In this work, we develop a platform hosting the iASiS Open Data Graph,
that combines state-of-the-art approaches and tools to automatically
integrate knowledge from both literature and structured resources into
a disease-specific knowledge base which can be incrementally updated.
The architecture of the platform is shown in Figure 1. In particular, all
literature currently available for the disease of interest is retrieved online,
considering both the PubMed abstracts and full-text documents from
PubMed Central5 (PMC) when available. Literature analysis tools are used
to automatically extract knowledge from the text, which is then integrated
in a knowledge base as a graph of inter-related concepts. In addition,
knowledge from biomedical ontologies and databases is integrated into the
same knowledge graph. Therefore, uniform access is provided to up-to-
date knowledge, automatically extracted from literature, and high-quality
manually reviewed knowledge from structured resources. Access to the
above integrated knowledge is provided through graph queries, which
can be used either for the development of advanced user interfaces or
for computational graph analysis of the graph. The pipeline developed in
this study is tested on the automated creation of knowledge bases for three
distinct diseases. Example graph queries are used to illustrate the value of
the knowledge bases.

3 https://skr3.nlm.nih.gov/
4 http://neo4j.het.io/browser/
5 https://www.ncbi.nlm.nih.gov/pmc/

Fig. 1. The architecture of the the iASiS Open Data Graph platform for the automated
integration of biomedical knowledge from different resources into a common semantic
graph.

3 Methods

3.1 Platform architecture

The proposed platform for the semantic retrieval and integration of
disease-specific knowledge has been designed and developed as a pipeline
of distinct modules that perform well-defined tasks and can be reused
independently. For the online retrieval of literature, a harvesting module
has been developed that interacts with the REST API of the Entrez
Programming Utilities in NCBI6. Then, an analysis module has been
developed that employs state-of-the-art tools to extract knowledge from
biomedical natural language text and extract structured knowledge for the
integrated graph. Concerning the structured resources, harvesting modules
have been developed to transform the data in their latest version into a
format appropriate for integration. Additionally, an integration module has
been developed to map all entities of structured resources in the coding
system of the Unified Medical Language System (UMLS) Metathesaurus.
All knowledge is integrated in a graph database, under a simple but
powerful representation, where graph queries can be employed to serve
the information needs of biomedical researchers.

3.2 Data harvesting

The basic source of available knowledge is the biomedical scientific
literature. Yet different resources for biomedical literature exist, as
reviewed by Masic, 2012, PubMed7 is the most established resource
offering more than 28 million citations. Most of these citations are
accompanied by an abstract which summarizes the content of the article.
As already mentioned in Section 1, PubMed also supports a powerful

6 https://www.ncbi.nlm.nih.gov/books/NBK25497/
7 https://www.ncbi.nlm.nih.gov/pubmed/
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Fig. 2. The literature harvester software module retrieves relevant literature from PubMed
and extracts only the abstract and the topic areas for each article.

semantic retrieval functionality based on MeSH indexing. In addition, it
is uniformly accessible, through the Entrez REST API, with PMC which
offers the full-text of about 4.7 million articles. In this work we exploit
these facilities to retrieve online all relevant article abstracts and their full-
text when available. In particular, a software module was developed to
interact with the Entrez REST API and harvest the relevant literature.

As graphically shown in Figure 2, the first step of the harvester
performs the appropriate semantic queries to PubMed, based on MeSH
terms in order to identify the relevant articles. The next step is to fetch the
relevant article citations in MEDLINE/Pubmed XML format. This format
includes a variety of information for each article using more than 100
different types of hierarchically related elements. The harvester extracts
only the abstract text and the topic areas for each article and provides them
in a simple JSON format. The basic functionality of the PMC harvester is
similar. The main difference is the extraction of the full-text from the PMC
XML format for each article. In addition, no MeSH topics are retrieved
from PMC since they are offered from PubMed. The inclusion of full-text
in this study was a key decision. The target was to perform an integration
of knowledge as deep as possible. Querying the integrated graph with a
concept should return, apart from articles where this concept is important
and possibly mentioned in the abstract, also articles that may contain
specific details related to the concept, available only in the full text.

Biomedical ontologies are another important source of domain
knowledge in the field of biomedicine. A harvester was developed
to support integration of biomedical ontologies available in the Open
Biomedical Ontologies (OBO) format (Smith et al., 2007). Currently,
more than 140 ontologies are available in the OBO Foundry8. Three basic
ontologies have been selected for the creation of the case study datasets:

• The Disease Ontology (DO) (Schriml et al., 2012) semantically
integrates disease terms and identifiers from different resources
including NCI’s thesaurus, SNOMED Clinical Terms and OMIM. It
includes more than 10,000 concepts with more than 6,000 mappings
to the UMLS. In this work only concepts mapped to the UMLS are
integrated graph.

• The Gene Ontology (GO) (Ashburner et al., 2000) provides more
than 24,000 concepts to represent three basic categories of genomic
knowledge, namely, biological processes, molecular functions and

8 http://www.obofoundry.org/

cellular components. GO is integrated into the UMLS, providing
mappings for all the GO concepts.

• MeSH is a hierarchical controlled vocabulary developed by NLM to
semantically index biomedical articles primarily based on their topics.
It provides more than 28,000 descriptors organized in sixteen tree
structures that cover a broad spectrum of knowledge, from chemicals
and organisms to humanities and geographical locations. All MesH
descriptors are linked to specific concepts which are integrated in the
UMLS.

The OBO harvester currently extracts only hierarchical (is-a) relations
from OBO ontologies. This restricts the exploitation of the available
knowledge in the ontologies, but since hierarchical relations are the most
important, we decided to focus these first. Especially for MeSH which was
not available in the OBO format, a preprocessing script was developed to
parse the MeSH XML format and produce a simpler version of MeSH in
the OBO format, that could be further integrated in the graph using the
OBO parser.

Apart from biomedical ontologies, other structured databases can also
be integrated, as long as the knowledge they provide can be expressed as
relations between concepts that can be mapped to UMLS. For example,
in this framework another harvester was developed to extract relations
expressing drug-to-drug interactions from DrugBank that is available
in XML format. DrugBank is a comprehensive, manually maintained
resource of information for drugs, containing more than 10,000 drug
entries with more than 200 fields of information per drug. Drug interactions
is the most abundant type of information in DrugBank, exceeding 300.000
which makes it a rich resource of knowledge (Wishart et al., 2017).

All harvesters for structured data resources described in this section,
including topic relations for articles, produce datasets of relations in the
same simple JSON format. As a result, all harvested data are uniformly
integrated in the semantic graph which is easily extensible with additional
knowledge. Coverage can be extended both towards more types of relations
for the supported resources and towards more resources, aiming at a
knowledge graph as comprehensive as possible.

3.3 Literature analysis

Discovering biological relations that include drugs, proteins, diseases and
other entities, through the extraction of knowledge from the scientific
literature is a challenging task. Despite multiple knowledge acquisition
efforts to catalog biological events in databases, a considerable amount
of unstructured knowledge is still buried in the scientific literature. Text
mining offers the potential to tap into the knowledge hidden in the ever-
increasing body of biomedical articles. Such automated extraction would
provide scientists with insights into underlying interactions and hidden
patterns with regard to co-occurrences of diseases, drug re-purposing and
a plethora of other tasks.

Our goal is not to create a new text mining tool, but rather to create
a framework where any such tool can be incorporated in the pipeline
of extracting biomedical relations from text and consequently enriching
a unified knowledge graph. Working towards this goal, the first non-
trivial obstacle is the variation of biomedical terms due to a variety of
reasons, such as orthographic (e.g. Hodgkins disease - Hodgkins Disease)
or synonym (e.g. headache - head-pain) variation. Fortunately, due to
the existence of many terminological resources, like curated ontologies
(Ashburner et al., 2000) and lexicons (Liu et al., 2005), we can overcome
this problem. In our work, we use the UMLS (Bodenreider, 2004) as the
reference basis for all entities and relations.

Specifically, we utilize two of the main components of UMLS, the
Metathesaurus (Schuyler et al., 1993) and the Semantic Network (McCray,
2003). The Metathesaurus is essentially a vocabulary database containing
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more than 100 vocabularies with more than one million concepts. The
key aspect of this thesaurus is that differing names for a biomedical
meaning are linked and aggregated under a single concept. Therefore, the
Metathesaurus deals with term variation and at the same time creates links
between different vocabularies, accumulating knowledge for a concept
from different domains (e.g. chemical, physical, gene associations).
On the other hand, the Semantic Network enriches the concepts of the
Metathesaurus with meaning, equipping them with semantic types and
relations between those types. There are 133 semantic types expressing a
high-order grouping of the concepts into categories, such as diseases, body
parts, genes or genomes etc., which are also hierarchically structured. Each
concept is mapped to at least one semantic type and always at the deepest
possible level of the hierarchy (e.g. “trout” is a fish, which is a more specific
type of animal). Together with 55 semantic relations between these types,
a rich network spanning the whole biomedical domain is created.

In order to harness the power of this representation, we use SemRep
(Rindflesch and Fiszman, 2003), a UMLS-based tool that extracts
biomedical predications, i.e. semantic triples in the form of subject-
predicate-object, from unstructured text. The subject and object arguments
in these predications are concepts from the UMLS and the predicate
is one of the semantic relations of the semantic network, connecting
the semantic types of the subject and object in the context of the
specific sentence. To achieve this, it also relies on MetaMap (Aronson,
2001) which is a tool that uses symbolic natural-language processing
(NLP) and computational-linguistic techniques to map biomedical text
to Metathesaurus concepts.

Fig. 3. The literature analysis module.

For our purposes, we incorporated the use of these tools in our pipeline
for analyzing the harvested literature as shown in Figure 3. Specifically,
after some preprocessing to remove artifacts not needed in the text (e.g.
tables, LaTeX code etc.) the body of the abstracts, or the full-text of
biomedical articles when available, is processed by SemRep with the
help of MetaMap, to produce concepts and predications found in the
text. We then transform the recognized entities and triples in a format
suitable to be inserted in the knowledge graph. Alongside the extracted

predications stemming from the Semantic Network, we also create a
new type of relation, which we call “MENTIONED IN”. This relation
expresses the occurrence of a concept in an article. The motivation behind
this approach is that biomedical literature contains relationships between
medical concepts that have been “distilled” through research and one way
to leverage this knowledge is to study the co-occurrence of concepts in the
documents. Co-occurence provides a way of measuring the association
between two terms and potentially helps in targeting interesting and
clinically important associations (for example between medications and
disorders). Such associations may have not been examined extensively
before and may prove interesting signals, e.g. for adverse drug reactions
or lead to novel off-label uses of existing drugs (Liu et al., 2012).

3.4 Knowledge Graph

The main motivation behind our work was to create a semantic knowledge
graph where concepts are related to other concepts with different types
of edge. The iASiS Open Data Graph integrates both structured and
unstructured knowledge in the same semantic graph. To accomplish
that, we use a single node per concept, based on the concepts of the
UMLS Metathesaurus. Using a single node per concept leads to a highly
integrated graph, where all available knowledge is linked to the node, in
the form of interactions with other concepts, regardless of the source of this
knowledge. Articles are also integrated as nodes in the graph connected
with concepts extracted from their text through a “MENTIONED IN”
edge. In order to incorporate the knowledge from biomedical ontologies
and other structured data sources in the graph, we took advantage of the
available UMLS REST API9, which helped to map terms from different
vocabularies (e.g. DrugBank, MeSH, GO) to UMLS concepts. This
allowed the integration of concepts and relations to the unified schema
that was already in place for biomedical literature.

Fig. 4. Integration of “HAS MESH” edges in the knowledge graph.

Alongside the entities and relations extracted from text and structured
data sources, we added another type of relation in the knowledge graph,
which we call “HAS MESH”. Each article in PubMed is associated with
a set of MeSH tags. All MeSH tags are first mapped to UMLS concepts
using the UMLS REST API and a new kind of triple, in the form of
“article-HAS MESH-concept” is created for each MeSH tag associated
with the article. These triples express the topics to which each article is

9 https://documentation.uts.nlm.nih.gov/rest/home.html
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connected. This is very important, as it captures knowledge that humans
have deducted, making the links rather robust and semantically rich. The
procedure followed is shown in Figure 4.

Regarding the technical implementation of the knowledge graph we
used the capabilities of Neo4j10. Traditional databases based on SQL are
suitable for storing structured data, but are somewhat rigid in expressing
relationships between the data of different tables11. On the other hand,
graph databases explicitly focus on the connectivity between the nodes.
Taking into account their superior performance when traversing many
levels of connectivity (Jaiswal and Agrawal, 2013), they become a natural
choice for storing biomedical concepts and relations. This is the reason
why Neo4j is increasingly adopted for bioinformatics projects that model
biological connectivity(Yoon et al., 2017, Mungall et al., 2016, Lysenko
et al., 2016).

4 Case studies and discussion
The methodology described above was applied to three distinct cases
of disease, namely Lung Cancer (LC), Dementia including Alzheimer
Disease (ADD) and Duchenne Muscular Dystrophy (DMD). A different
knowledge graph was developed for each case and appropriate graph
queries were used to investigate different properties of the proposed
approaches to effectively identify information of interest. In the following
sections, details are presented regarding the development of the three
datasets, as well as the results of queries that aim to investigate the potential
use of the semantic graph.

4.1 Dataset creation

The platform described above was employed three times to create three
corresponding semantic graphs configured with appropriate MeSH terms
for each case. In particular, the MeSH term used for LC was “Lung
Neoplasms” (D008175), for ADD was “Dementia” (D003704) and for
DMD was “Muscular Dystrophy, Duchenne” (D020388). Based on these
semantic topics, the pipeline shown in Figure 1 retrieved all available
relevant literature12 and created three graphs. As expected, the volume of
available knowledge was different for the three cases resulting in different
size. For ADD and LC which are highly prevalent diseases, more than
100,000 articles were available complicating the identification of specific
information needed for detailed scientific questions. Even for DMD,
which is a rare disease, the number of directly relevant articles exceeded
4,000, which is still difficult to manage. Details about the composition
of these datasets are presented in Table 1. For the majority of the articles
only the abstract was available. DMD had the higher percentage of full
text availability exceeding 24%. In terms of quantity, knowledge about
concept occurrence in the articles (“MENTIONED IN”) is dominant in the
knowledge graphs. Relations indicating the relevance of articles to specific
concepts (“HAS MESH”) are also quite abundant and domain knowledge,
in the form of extracted relations between concepts is the least frequent.
This could be attributed to limitations in relation extraction since this is
the most complex and less mature part of the processing.

As described in Section 3, knowledge from structured resources is also
integrated in the graph. These structured resources are not disease-specific
and details about the corresponding datasets are presented separately in
Table 2. In this setup, only hierarchical relations were harvested from DO,
GO and the MeSH hierarchy and only interactions between drugs from the
DrugBank. These types of relation are among the most important ones and
constitute a proof of concept for the integration of any kind of relation from

10 https://neo4j.com/
11 https://neo4j.com/blog/demining-the-join-bomb-with-graph-queries/
12 until October 11 2017

Table 1. Number of articles with abstract only and articles with full-text are
reported for each case study, along with the corresponding number of distinct
concepts and relations between concepts extracted from literature. The number
of “HAS MESH” and “MENTIONED IN” relations is also reported.

Case article article concepts relations relations relations
study abstracts full-texts extracted extracted has MeSH mentioned in

DMD 4,403 1,075 21,982 27,954 113,136 335,071
ADD 108,458 6,000 75,985 392,421 3,651,698 7,587,772
LC 141,712 10,000 92,846 608,759 4,228,785 9,940,847

Table 2. Types of knowledge and integration details about structured resource
datasets. Only selected relation types are considered for each dataset. For DO
only concepts with mappings to the UMLS are integrated.

Resource relation type concepts integrated relations integrated

DO is_a 5,307 5,129
GO is_a 64,751 125,629
MeSH is_a 55,400 123,287
DrugBank drug interactions 581,055 1,628,077

Table 3. Top 10 semantic types for each disease ranked by the number of
distinct concepts extracted from corresponding literature.

Semantic type DMD rank ADD rank LC rank

Gene or Genome 2 1 1
Amino Acid, Peptide, or Protein 1 3 3
Organic Chemical 4 2 2
Pharmacologic Substance 5 4 4
Finding 3 5 5
Disease or Syndrome 7 6 6
Biologically Active Substance 6 7 7
Body Part, Organ, or Organ Component 11 8 10
Therapeutic or Preventive Procedure 12 10 8
Intellectual Product 10 9 14
Quantitative Concept 8 13 12
Qualitative Concept 9 15 18
Neoplastic Process 59 36 9

structured resources. In practice, different setups would be more suitable,
depending on the domain areas and the specific interests of the users. These
setups can be implemented combining different structured resources or
parts of them per case. Apart from selecting resources relevant for each
use case other important issues, like the potential overlap or conflict in the
content of different resources, should also be carefully considered.

4.2 Query examples

The amount of accumulated knowledge and the variability observed
among different diseases highlight the importance of two distinct but
complementary needs regarding knowledge access. It is crucial to have
precise access to highly detailed information and at the same time it is
important to have a broad overview of all knowledge available to select
specific areas of focus. Given the integrated disease-specific semantic
graph, both these needs can be addressed through corresponding queries.
For example, ranking the semantic types of distinct concepts extracted from
literature for each case study can indicate directions for further study. In
Table 3 the top 10 semantic types are reported with their corresponding
rank in each knowledge graph. Some semantic types, like Gene or Genome
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Table 4. Top 10 semantic types with highest differentiation among the three
diseases, based on the standard deviation (STDV) of their ranks in the
corresponding graphs.

Semantic type LC rank ADD rank DMD rank STDV

Plant 23 22 79 32.62
Bacterium 53 72 104 25.78
Neoplastic Process 9 36 59 25.03
Fungus 72 94 120 24.03
Mental or Behavioral Dysfunction 65 28 53 18.88
Eukaryote 39 43 70 16.86
Activity 81 76 51 16.07
Mental Process 62 39 34 14.93
Hazardous or Poisonous Substance 32 45 61 14.53
Organism Attribute 77 71 50 14.18

and Amino Acid, Peptide, or Protein are ranked highly for all three diseases.
However, some interesting differences can be observed. For example, the
semantic type Neoplastic Process is ranked higher for LC than for the
other diseases, as expected. Less clear differences may also have some
explanation. For example concepts for Amino Acid, Peptide, or Protein
are ranked first only in DMD. The fact that DMD is caused due to the
lack of the protein dystrophin could be a potential explanation. Potential
explanations could also be investigated for other less clear differences like
concepts for Organic Chemical being ranked higher in ADD and LC.

In order to emphasize the differences among disease, we re-ranked all
semantic types according to the standard deviation of the three ranks of
each semantic type for the three use cases. Table 4 presents the ten semantic
types that differ the most in the three knowledge graphs. The most extreme
case for the three diseases is the semantic type Plant which seems to be
more frequent in LC and ADD than for DMD. This observation lead to
further investigations regarding the role of plants in research for LC and
ADD. Other similar observations can also provide directions for further
study, constructing a profile for each case study. Such observations are
the higher ranking of Mental Process, activity and organism attributes for
DMD.

Table 5. Five most frequently occurring
concepts of semantic type Plant in the
literature for LC and ADD.

Rank LC ADD

1 Plants Bark - plant part
2 Nicotiana Parkinsonia
3 Gossypium Bikinia le-testui
4 Bikinia le-testui Plants
5 Rosa Ginkgo biloba

Next, we focus on the first observation about semantic type Plant, in
order to illustrate the power of the semantic graph. In particular, we query
the three knowledge graphs for the five most frequently occurring concepts
of this type. The results presented in Table 5 show that Plants is the most
frequent concept with semantic type Plant in the LC knowledge graph.
A quick overview of the knowledge available about each concept can be
retrieved with corresponding graph queries. In the LC knowledge graph
there are 795 articles, where the concept Plants occurs 1463 times and 13
articles having a topic relevant to Plants. In addition, there are 195 distinct
relations of 5 different types between Plants and 194 distinct concepts in

Table 6. Types of relation involving the concept Plants in the LC
literature. The number of relations among distinct concepts and
the corresponding extracted instances are also reported.

Relation type distinct relations relation occurrences

LOCATION_OF 120 202
ISA 59 84
PROCESS_OF 9 10
PART_OF 6 7
INTERACTS_WITH 1 1

Table 7. Top 10 concepts more frequently related to Plants in
LC literature, the frequency of the relations and the number of
corresponding articles.

Concept label relation occurrences distinct articles

Curcuma longa 13 13
Chrysotile 11 8
polyphenols 10 9
3-hydroxyflavone 8 8
Asbestos 7 7
Antineoplastic Agents 7 7
Oils, Volatile 7 7
Chlorophyll 4 4
Magnolia 4 4

the LC literature. Table 6 summarizes all relations involving the concept
Plants extracted from the LC literature. The majority of extracted relations
involving Plants provide general taxonomic knowledge and structural
information about Plants. The top ten concepts more frequently related
with Plants in LC are also available in Table 7. Links to specific sentences
in the articles where these relations have been extracted from are also
available in the graph as relation properties.

Examination of the source articles confirms that most of the related
concepts are plant species (e.g. Curcuma longa, Magnolia) or chemicals
found in plants (e.g. polyphenols, 3-hydroxyflavone, Chlorophyll) that
have been studied for their potential effect on lung cancer. The fact that
articles are organized per related concept occurrence allows a selective
examination of them. For example, looking at the article (Saha et al.,
2010) for Curcuma longa confirms that this is indeed a plant studied for LC
effects. Following the same approach and using similar queries for other
concepts in the tables, we observe that three concepts of semantic type
Plant are of interest in LC research ( Plants, Nicotiana and Gossypium),
and two in the context of ADD ( Plants and Ginkgo biloba). On the other
hand, as indicated by the initial observation in Table 4 the role of plants in
DMD studies is limited.

In an alternative scenario, a researcher may be interested in the effect of
drug combinations in long surviving LC patients. Contrary to the previous
example, this information need is highly targeted and involves distinct
inter-related concepts. A central concept in this question is long-term
survival of patients which can be expressed by the concept long Term
Survivorship in the UMLS. This concept is mentioned in 2303 articles in
LC dataset, but none of them is annotated with it as a topic. We further
segment this set of articles, based on drug concepts co-occurring with long
Term Survivorship. To restrict the search in drug concepts only, we can
add a clause in the graph query requiring that the co-occurring concept
should be a child of the Pharmaceutical Preparations concept (i.e. related
with the “is a” relation). This query returns more than 300 concepts with
supporting articles.
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In order to identify the most relevant concepts out of them, we can
search for concepts that are related to long Term Survivorship instead of
co-occurring. This query retrieves 14 distinct concepts related with Long
Term Survivorship with five distinct types of relation. Each occurrence
provides a reference to the corresponding sentence of the article which
can facilitate consulting the initial resource text. In addition, each of these
concepts can also be enriched with other supplementary information from
the knowledge graph. For example, the number of other entities directly
interacting with each concept can be retrieved using an appropriate graph
query. The 14 related concepts with the accompanying information are
presented in Table 8.

Table 8. Drug concepts related to Long Term Survivorship in LC literature with
the frequency of the relation and the number of other interacting drug concepts.

Concept label frequency interacting concepts

Antineoplastic Agents 3 210
Cisplatin 3 991
Aim 2 243
Melphalan 1 58
everolimus 1 640
cetuximab 1 71
complement C3a, des-Arg-(77)- 1 6
Interferons 1 12
animal allergen extracts 1 87
gefitinib 1 985
Altretamine 1 110
Topotecan 1 561
Paclitaxel 1 1518
Carboplatin 1 147

In this example relations automatically extracted from the literature
are not distinguished from relations coming from structured resources.
In particular, “is a” relations from the integrated ontologies were used
to retrieve drug concepts while drug interactions from DrugBank have
been taken into account in interacting concepts column of Table 8. Since
structured resources are in general more reliable than automatic extraction,
we could also restrict to it, to increase precision to the detriment of
recall. For example, restricting the queries for drug concepts to use
ontological “is a” only, results in no drug concepts found related to Long
Term Survivorship and only the seven drug concepts presented in Table 9
co-occurring with it in 117 distinct articles.

Table 9. Drug concepts* co-occurring with Long Term Survivorship in LC
literature.

Concept label distinct articles of co-occurrence

Solutions 91
Drug Combinations 18
Prodrugs 5
Investigational New Drugs 2
Xenobiotics 2
Drugs, Non-Prescription 1
Controlled substance 1

*Retrieved based on ontological “is a” relations only.

5 Conclusion
Computational tools can support biomedical experts in identifying and
organizing knowledge relevant to their work, based on an ever-increasing
biomedical literature and a proliferation of disparate resources. In this
paper we propose a framework for the retrieval and semantic integration
of disease-specific knowledge we focusing on automated and incremental
update of the knowledge. Knowledge coming from relevant publications
is integrated with biomedical ontologies and databases into a common
semantic graph representation. This graph provides both uniform way for
biomedical experts to query and access domain knowledge while also
facilitates knowledge discovery using computation approaches.

The iASiS Open Data Graph has been used to create semantic graphs
for three case studies and example queries have been employed to
investigate the potential of the platform and its limitations. Directions
and ideas for improvement have been identified and discussed based
on preliminary experimentation with the resulting datasets. A detailed
evaluation is planned to estimate the importance of observed caveats, reveal
new ones and set priorities for future work. A specialized user interface for
easy graphical interaction with the knowledge graph is being developed
towards this direction.
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