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a b s t r a c t 

In this paper, we examine the ability of low-level multimodal features to extract movie similarity, in the 

context of a content-based movie recommendation approach. In particular, we demonstrate the extrac- 

tion of multimodal representation models of movies, based on textual information from subtitles, as well 

as cues from the audio and visual channels. With regards to the textual domain, we emphasize our re- 

search in topic modeling of movies based on their subtitles, in order to extract topics that discriminate 

between movies. Regarding the visual domain, we focus on the extraction of semantically useful features 

that model camera movements, colors and faces, while for the audio domain we adopt simple classifica- 

tion aggregates based on pretrained models. The three domains are combined with static metadata (e.g. 

directors, actors) to prove that the content-based movie similarity procedure can be enhanced with low- 

level multimodal information. In order to demonstrate the proposed content representation approach, we 

have built a small dataset of 160 widely known movies. We assert movie similarities, as propagated by 

the individual modalities and fusion models, in the form of recommendation rankings. Extensive exper- 

imentation proves that all three low-level modalities (text, audio and visual) boost the performance of a 

content-based recommendation system, compared to the typical metadata-based content representation, by 

more than 50% relative increase . To our knowledge, this is the first approach that utilizes a wide range 

of features from all involved modalities, in order to enhance the performance of the content similarity 

estimation, compared to the metadata-based approaches. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In order to cope with the overwhelming amount of data

available both online and offline, we are in dire need of recommen-

dation systems, to browse through item collections and get mean-

ingful recommendations. This is also the case when looking at mo-

tion pictures in particular. There are several state-of-the-art systems

providing movie recommendation services, most of which can be

classified into either collaborative filtering systems, such as Movie-

Lens , 1 either content-based systems, like jinni , 2 or hybrid systems,

as is IMDb 3 . Specifically, collaborative filtering systems are based

on user preferences regarding the involved items, in order to make

recommendations, while content-based systems use available de-

scriptors of the movies to relate them with user preferences. How-
∗ Corresponding author: 

E-mail addresses: bogas.ko@iit.demokritos.gr (K. Bougiatiotis), tyianak@iit. 

demokritos.gr (T. Giannakopoulos). 
1 https://movielens.org/ . 
2 http://www.jinni.com/ . 
3 http://www.imdb.com/ . 
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ver, all these systems rely on human-generated information, in or-

er to create a corresponding representation and assess movie to

ovie similarity, not taking into account the raw content of the

ovie itself, but solely building upon annotations made by hu-

ans. 

In this paper, we propose a method for representing movies,

hat is based directly on the movie’s audio, visual and textual con-

ent. Our vision is to incorporate knowledge regarding the way a

ovie “sounds” and “look” in the recommendation process. In this

ay, we differentiate from the related work (presented in the se-

uel), by providing latent representations of each movie, that could

ead to explanatory results about the recommended movies, that

ake into consideration all “aspects” a movie. 

The rest of this paper is organized as follows. Firstly, the related

ork is presented ( Section 2 ). Afterward, the general workflow and

etails of the proposed method are explained ( Section 3 ). We then

resent our data collection and ground truth generation method-

logy ( Section 4 ). In the following section ( Section 5 ) the experi-

ental results are presented and discussed. We close by drawing

onclusions and outlining topics for further research ( Section 6 ). 

https://doi.org/10.1016/j.eswa.2017.11.050
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.11.050&domain=pdf
mailto:bogas.ko@iit.demokritos.gr
mailto:tyianak@iit.demokritos.gr
https://movielens.org/
http://www.jinni.com/
http://www.imdb.com/
https://doi.org/10.1016/j.eswa.2017.11.050
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. Related work 

Much research has been done on multimodal information ex-

raction, specifically focused on video data sources. In the con-

ext of recommendation systems, there have been a number of

tudies ( Mei, Yang, Hua, & Li, 2011; Yang, Mei, Hua, Yang, Yang,

 Li, 2007 ) focused on multimodal video recommendation, while

ther approaches are more application-specific, such as multi-

odal emotion classification ( Tiwari, Duong, Lefebvre, Demarty,

uet, & Chevallier, 2016 ) or affective content analysis based on

ultimodal features ( Ashwin, Saran, & Reddy, 2016 ). For an in-

epth overview of this field one can have a look at this survey

 Brezeale & Cook, 2008 ). However, in the context of movie recom-

endation systems, the vast majority of existing approaches are

ased on collaborative knowledge or metadata ( Miller, Albert, Lam,

onstan, & Riedl, 2003; Wang, Yu, Feng, & Wang, 2014 ). 

The adoption of the multimedia signal of the movies for in-

exing and/or recommendation, has been limited to particular ap-

lications , such as emotion extraction ( Kahou et al., 2013; Ma-

andrakis, Potamianos, Evangelopoulos, & Zlatintsi, 2011 ) or vio-

ent content detection ( Giannakopoulos, Kosmopoulos, Aristidou, &

heodoridis, 2006; Nam, Alghoniemy, & Tewfik, 1998 ). Other stud-

es focus only on particular aspects of the movie, such as gender

epresentation ( Guha, Huang, Kumar, Zhu, & Narayanan, 2015 ) or

peaker clustering ( Kapsouras, Tefas, Nikolaidis, Peeters, Benaroya,

 Pitas, 2017 ) using audiovisual features or movie topics gener-

ted from text ( Dupuy, Bach, & Diot, 2017 ). An application of deep

onvolutional networks is in Farabet, Couprie, Najman, and Le-

un (2013) where the focus in on scene labeling from raw images.

n addition, special focus has been given on video summarization,

hich is a rather important task that helps in extracting all the

ecessary information required from a video, without sacrificing

uch of the original informativeness. This task is often referred to

s saliency estimation ( Koutras, Zlatintsi, Iosif, Katsamanis, Mara-

os, & Potamianos, 2015 ). A state-of-the-art survey is reported in

i and Kuo (2013) with focus on video content analysis, represen-

ations and the possible applications of such endeavors. 

Furthermore, audio-visual features have been adopted for movie

enre classification ( Rasheed & Shah, 2002 ). In Deldjoo, Elahi, Cre-

onesi, Garzotto, Piazzolla, & Quadrana 2016 , a video recommen-

ation system based on stylistic visual features is proposed, how-

ver, no other modalities are used. An extension of the previous

ystem ( Deldjoo, Elahi, Cremonesi, Moghaddam, & Caielli, 2017a;

eldjoo, Quadrana, Elahi, & Cremonesi, 2017b ), utilizes visual cues

rom trailers, as well as, human-generated tags. Another interesting

ecent work is in Zhao, Lu, Pan, and Yang (2016) , where movie rec-

mmendation is done utilizing matrix factorization techniques on

mages stemming from movie posters and frames. Regarding the

udio domain, Van den Oord, Dieleman, and Schrauwen (2013) use

eep convolutional neural networks to predict latent factors from

usic audio signals and apply them in music recommendation.

eep learning frameworks have also been used in the textual do-

ain of movies but not for recommendation purposes. Specifically,

n Serban, Sordoni, Bengio, Courville, and Pineau (2015) they con-

tructed a generative model for movie dialogues based on a hier-

rchical recurrent encoder decoder neural network. 

Finally, a fresh idea is reported in Wei, Zheng, Chen, and

hen (2016) , where a hybrid recommender system based on so-

ial movie networks and topic models is proposed with interest-

ng results. Another hybrid recommender system is presented in

ingh, Mukherjee, and Mehta (2011) . There, the authors focus on

he fusion of collaborative filtering with sentiment classification of

ovie reviews to boost the final results. 

However, in this paper, we introduce the more ambitious ob-

ective of representing each movie directly from its raw multimodal

ontent . Our goal is to find correlations between similarity ex-
racted from low-level feature modalities and high level associa-

ion of those movies. This will lead us to innovative ways of defin-

ng movie similarity, explore latent semantic knowledge from low-

evel cues and boost traditional information retrieval systems with

nformation from heterogeneous content sources. The overall vision

f adopting low-level modalities in content-based recommendation

ystems is two-fold: 

• to boost the performance of the recommendation systems, by in-

troducing new and diverse content descriptors that stem from

low-level multimodal information 

• to provide latent representations of the movies that can lead to

knowledge discovery and explanatory results about users’ pref-

erences (e.g. user’s X preferences are highly influenced by the

director’s adopted techniques) 

. Proposed method 

.1. General workflow 

The overall scheme of the methodology described in the current

ork is presented in Fig. 1 . In summary, the following steps, with

egard to the different modalities, are carried out : 

• Text analysis: Preprocessing, followed by the training of a topic

model (through Latent Dirichlet Allocation ), of the subtitles for

each movie. This textual analytics process is applied as the core

component of the subtitle-based approach, in order to repre-

sent the textual content of the corresponding movies as vectors

of topic weights. This results in a text representation matrix of

N rows ( N is the number of movies in the database) and nTopics

columns. 
• Audio analysis: two supervised audio models that represent the

movie’s content distribution to music and audio classes. This

generic audio-based representation provides an aggregated pro-

jection of the types of sounds that appear in a movie. This

twofold procedure results in two feature matrices for the whole

dataset. Again, rows represent movies and columns represent

the number of audio (or musical genre) classes respectively. An

element of these matrices corresponds to the proportion of data

classified to the respective audio (or musical genre) class. Both

audio and musical genre matrices have 8 columns, since 8 au-

dio classes and 8 musical genres are used in total. 
• Visual analysis: features from the visual domain are extracted

based on the distribution of colors, camera movement, exis-

tence of faces in the scenes and shot lengths. This results in a

feature matrix of visual characteristics. Rows represent movies

and columns visual features. As explained in the sequel, the

number of columns of this matrix is 208. 
• Metadata analysis: Metadata information about each movies’

cast, director and genre are parsed into categorical feature vec-

tors, in order to evaluate the ability of these handcrafted at-

tributes to extract similarity measures between movies, and

combine this type of information with subtitles and audio-

visual content similarity. Using metadata is not the core idea of

this paper, however we adopt their usage in order to demon-

strate the ability of the low-level multimodal features to boost

the performance of the content similarity procedure. 
• Content similarity fusion: Fusing the similarity matrices that

were generated through the previous steps, we yield multi-

modal similarity measures between movies. In the context of

this work, we have focused on a simple and straightforward fu-

sion approach that applies weighted averaging on the individual

content similarity matrices. 

Our goal in the context of this work is to prove that these low-

evel modalities can improve the performance of the metadata-

ased content similarity estimation, when combined. 
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Fig. 1. Workflow diagram of the proposed method. Different representations are extracted from each low-level modality (text, audio and visual), resulting in five indi vidual 

content similarity matrices. 
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3.2. Subtitles analysis 

3.2.1. Preprocessing 

We start by applying a series of essential preprocessing steps

on each subtitles’ document, since these documents are . srt files in

our dataset, filled with unwanted information, such as timestamps

and markup elements. Moreover, we also want to filter out noisy

data and non-informative words that do not add to the distinctive-

ness of the documents. In particular, the following transformations

are applied in all documents: 

• Regular expressions removal : remove mark-up elements, times-

tamps and anything not content-related 

• Tokenization : case-folding and splitting up the textual strings to

words using whitespaces 
• Lemmatization unify terms stemming from the same lemma

having differences due to inflectional morphologies. The lem-

matizer used to this end is based on the WordNet database

( Fellbaum, 1998 ). 

Afterwards, we move on to word filtering . Firstly, common,

movie-domain specific and subtitle related stopwords are removed.

These are mainly common words, taken from the nltk stopwords

corpus , 4 such as “I”, “it”, “and” etc. that do not offer any addi-

tional information to the document. We also manually selected

words that are common ground in the subtitles or contain errors

such as “aint”, “Ill”, “theres” and “yeah-yeap-yess”. We also remove

words which provide low information for each document. These

are words with low intra-document and high inter-document fre-

quency. The core idea is that words appearing only a few times

in each document or words appearing in most of the documents
4 http://www.nltk.org/nltk _ data/ . 

w

t  
n our collection are not useful in order to differentiate them. This

s also useful for trimming the total vocabulary size, thus cutting

own the dimensions for the representation space of the docu-

ents countering the problems of sparsity and fragmentation of

ector-term space. 

After the aforementioned processes, each movie can be thought

f as a bag of words ( BoW ). This allows us to model each document

s a vector in this term space, with values in each cell denoting the

umber of occurrences of the corresponding word. 

.2.2. Content representations 

There are many ways to use the aforementioned BoW vectors

n information retrieval applications. In the context of our work

e will mainly focus on Latent Semantic Indexing ( LSI ) and La-

ent Dirichlet Allocation ( LDA ). However, we first describe the term

requency-inverse document frequency ( tf-idf ) weighting scheme,

hich is used mainly for benchmarking purposes as the most eas-

ly implement methodology among the ones mentioned. 

erm frequency-inverse document frequency(tf-idf). Tf-idf is a

eighting scheme, where the words in the BoW representation of

he documents are allocated a weight denoting the importance of

he word for the specific document ( Salton & McGill, 1983 ). The

eight is computed based on two different factors. The first is the

erm frequency in the document and denotes the importance of

he word for the specific document ( Luhn, 1957 ), while the second

s a factor inversely proportional to the frequency of the term over

he whole collection of the documents ( Jones, 1972 ). The resulting

eight, fusing those two sources of information, is calculated as: 

 f − idf i,d = t f i,d × idf i = t f i,d × log 2 
N 

n 

(1)

i 

http://www.nltk.org/nltk_data/
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Fig. 2. Singular value decomposition followed by rank lowering for latent semantic indexing. 
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here tf i, d is the absolute frequency of term i in document d, N

he number of documents and n i the number of documents in our

ollection in which term i appears. 

atent semantic indexing (LSI). Although tf-idf is a powerful tool,

here are more sophisticated methods that mainly deal with

he problems of sparsity and dimensionality of the document-

erm representation used in the previous scheme. Moreover, they

lso address the problems of synonymy and polysemy. One of

he most widely used methods is Latent Semantic Indexing ( LSI )

or Latent Semantic Analysis ( LSA ) as referred in other domains)

 Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990 ). The

ore idea behind this methodology is that instead of projecting

ocuments in the multidimensional term space, we can project

oth the terms and the documents in a much lower dimensionality

pace, whose axes represent concepts that essentially group words

ogether. These axes are the Principal Components from Principal

omponents Analysis ( Pearson, 1901 ) that exhibit the greatest vari-

tion and are propelled from the co-occurence of words in the doc-

ments. In this way two documents can have high similarity in the

atent semantic space without containing the same words, leading

o interesting results in terms of information retrieval. 

LSI is essentially a two-step method as illustrated in Fig. 2 5 

hat uses a low-rank approximation of the document-term ma-

rix created from the term-vector space projections. Firstly, singular

alue decomposition (SVD) is applied on the document-term ma-

rix, where the newly created eigenvectors represent the concepts

n the latent space. Secondly, lower order columns are ignored and

nly the first k principal concepts of the eigenvalues/eigenvectors

atrices, reducing the dimensionality of the representation, thus

utting down noise in the latent space, resulting in a richer word

elationship structure that reveals latent semantics present in the

ollection. Now, using those lower-dimensionality matrices we can

ap documents (movies in our case) in the latent concept space

nd calculate similarity between movies in this richer representa-

ion space. 

Note that we use the LSI method after implementing the tf-

df transform on the document-word matrix of our collection, but

his is not mandatory, since other initial document representations
5 Source: https://liqiangguo.files.wordpress.com/2011/06/lsi2.pdf . 

t  

b  

t  
ould also be used instead (e.g. simple word counts). Also, the

rder of dimensionality reduction that LSI imposes on the vector

pace model (the number of principal concepts to keep) is a user-

efined parameter. After, extensive experimentation in our setup

e selected T = 55 concepts to be the optimal value. In order to

isualize the projection of the movies in the concept space, we il-

ustrate in Fig. 3 a 2-d reconstructed example. The x-axis concept

s related to the Lord of the Rings trilogy, with important words as

hose shown in the caption of the axis, while the y-axis is related

o the Spider Man Movies. The words shown in the axes are the

oefficients of the most influential words for this specific eigen-

ector/concept of the LSI method. The top cluster of movies are

he Spider Man movies, while the utmost right cluster of movies is

orrespondingly the Lord of the Rings movies, as expected. Notice

owever, the mid level center cluster with movies belonging to the

arry Potter series. They have large values in the y-axis concept be-

ause of the high influence of the word “harry” (i.e. “harry osborn”

s the name of a character in Spider Man ) in the y-axis concept,

mong other words. 

atent Dirichlet Allocation (LDA). In order to deal with the short-

omings of LSI, like the fact that LSI does not take into account

hat the scores in the document-term matrix come from term fre-

uencies and the resulting eigenvectors may lead to negative co-

fficients in the concept space, we also implement a topic model-

ng algorithm, namely Latent Dirichlet Allocation ( LDA ) ( Blei, Ng, &

ordan, 2003 ). This is a probabilistic generative model structured

pon the idea that all documents (movies) can be thought of as a

ixture of specific topics.Each movie exhibits those topics in dif-

erent proportions, so alike movies tend to exhibit more or less

he same topics. Each topic is a distribution over the words in the

ocabulary of our collection. LDA is a generative process, mean-

ng that each document in our collection can be created through

 structured process, given a set of hidden variables. Specifically,

lgorithm 1 describes they way in which the documents in our

ollection are generated. 

The aforementioned procedure is based on two hidden vari-

bles. Firstly, the topic distributions over words βk , ∀ k topics and

he distribution of documents over topics θd , ∀ d documents. Using

he available documents, our goal is to infer the posterior distri-

ution of these hidden variables given the observed ones, namely

he document-words matrix. The variables needed are the num-

https://liqiangguo.files.wordpress.com/2011/06/lsi2.pdf
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Fig. 3. Projection in a 2d-concept space of the movies. The x-axis concept is related to the Lord of the Rings trilogy, while the y-axis is related to the Spider Man Movies. 

Algorithm 1: Generative process of LDA. 

1 for each topic βk , k : 1 ..K do 

2 Choose βk ∼ Dirichlet (η) ; // A distr. over words 

for the topics 

3 end 

4 for each movie d d in our collection do 

5 Choose θd ∼ Dirichlet (α) ; // A distr. over topics 

for the document 

6 for word w n in d do 

7 Choose a topic the word belongs 

to z d,n ∼ Multinomial (θd ) ; 

8 Choose a word w d,n from 

p(w d,n | z d,n , βz d,n 
) ∼ Multinomial (βz d,n 

) 

9 end 

10 end 
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e  
ber of topics K that exist in our collection and the hyperparam-

eters of the Dirichlet distributions η, α. These parameters con-

trol the sparsity of the topic-word relations and document-topic

distributions and are mainly calculated heuristically ( Griffiths &

Steyvers, 2004 ). Maximum a posteriori estimation is intractable for

this model ( Dickey, 1983 ), however there are many variatonal and

sampling methods for approximation of the wanted posterior. In

our case, we used a Collapsed Gibbs Sampling version of the algo-

rithm ( McCallum, 2002 ) and more specifically its implementation

in the Gensim library ( ̌Reh ̊u ̌rek & Sojka, 2010 ). We defined K = 55

topics after experimenting with the documents in our collection,

while hyperparameters η, α are both optimized during fitting of

the model ( Minka, 20 0 0 ). 

In order to give a qualitative example of the generated topics

we illustrate some of them as word clouds in Fig. 4 . The size of

each word is proportional to the importance of the word for this

topic. If we observe the resulting topics, we can see that they are
ell formulated and coherent. For example, the top left topic is

ighlighted by words such as dad, father, mom, son, school , defining

 family related topic while the bottom right exhibits mainly words

ike men, colonel, war, general , defining a war related topic. This

emantically concise and friendly way of representing the topics

xisting in our collection is another reason why LDA is sometimes

pted in favor of LSI. 

Moreover, we demonstrate in Fig. 5 the usefulness of the

earned topic model in clustering certain movies together based

n their relevance through specific topics. Here, we showcase the

ost influential movies tethered to two specific topics, as gen-

rated from our collection. One topic is from the word cloud in

he previous figure, with words about family, school etc. and the

ther one is related to imprisonment, security and the state. As

ou can see for the figure, American Beauty, Donnie Darko, The 4oo

lows and Truman Show have been clustered together as movies

ocused on the first topic, while V for Vendetta, The Lives of Others,

hawshank Redemption and Equilibrium have been brought together

icely as co-thematic movies about the latter topic. 

This higher level of representation and thematic browsing

f the movies is an invaluable tool, in order to get content-

enerated recommendations that conventional recommendation

ystems can’t offer. 

.3. Audio analysis 

The audio signal is a very important channel of information

ith regards to a movie’s content: music tracks, musical back-

round themes, sound effects, speech, acoustic events, they all play

 vital role in forming the movie’s “style”. Therefore, a content rep-

esentation approach should also take into account these aspects of

nformation. Towards this end, in the presented method we have

xtracted two types of information: (a) music-genre statistics and

b) audio event statistics. 

In particular, we have trained two separate supervised mod-

ls using Support Vector Machines, in order to classify all movie
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Fig. 4. Word Clouds examples for 4 Topics. 

Topic Model

hope,
prison,
security,
escape,
state

school, dad,
mom,
house,
parent

Fig. 5. Clustering of movies based on specific topics. 
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udio segments to a set of predefined classes related either to

udio events or musical genres. To this end, the pyAudioAnalysis

 Giannakopoulos, 2015 ) library has been used to extract audio fea-

ures both in a short-term and in a mid-term basis. The movie au-

io stream is split to non-overlapping segments of 2 s. For each

id-term segment, a set of mid-term feature statistics (described

n Giannakopoulos, 2015 ) is extracted to represent its content. 

This feature vector is fed as input to the audio event classifier,

hich decides for the respective class label. The adopted classes

or this task are: music, speech, 3 types of environmental sounds

low energy background noise, abrupt sounds and constant high

nergy sounds), gunshots-explosions, human fights and screams (8
lasses in overall). Furthermore, each segment classified as “mu-

ic” is also fed as input to a musical genre classifier, which de-

ides among the following classes: jazz, classical, country, blues,

lectronic, rap , reggae and rock. The result of this process is a se-

uence of music-genres and a sequence of audio events. Note that,

n order to train the two classifiers a separate and independent

ataset has been annotated. The final representation that corre-

ponds to the whole movie is provided by two vectors that rep-

esent the proportions of each musical-genre or audio event class. 

Fig. 6 presents an example of three musical-genre-related fea-

ures for 10 movies. The three features correspond to the propor-

ion of music segments classified as “rock”, “electronic” or “classi-

al”. Three obvious “clusters” can be observed: movies with clas-

ical music themes (e.g. Schindler’s List ), movies with almost equal

istributions of electronic and rock music segments (e.g. The Ma-

rix and 24 Hour Party People ) and two movies ( Pi, Fight Club ) that

re mostly related to electronic music. 

.4. Visual analysis 

Visual information contains the major characteristics of a movie

egarding its filming techniques and its type of involved actions,

o it can be considered as a richer domain compared to the audio

edium. Our goal with regards to the visual channel, in the con-

ext of the presented research effort, is to extract low-level visual

eatures that express latent semantic attributes that discriminate

etween different cinematic techniques and film contents. 

Table 1 presents the list of features extracted. These features

re extracted on a frame basis, i.e. for each frame of the movie.

or reducing computational complexity, all frames are re-sized to

 fixed width of 500 pixels. In addition, we process 2 frames per

econd, since experiments have shown that this is an adequate rate



92 K. Bougiatiotis, T. Giannakopoulos / Expert Systems With Applications 96 (2018) 86–102 

Fig. 6. Examples of 10 movies distributed in 3 musical genres. The values in the [0, 1] range correspond to the proportion of musical segments classified to the respective 

musical genre class. 

Table 1 

List of adopted frame-wise visual features. The final movie representation is a vector of 52 × 4 = 208 feature statistics. 

Category Indices Name Description 

Color and illumination 0–7 R Hist Histogram of the red coordinate (RGB) 

8–15 G Hist Histogram of the green coordinate (RGB) 

16–23 B Hist Histogram of the blue coordinate (RGB) 

24–31 V Hist Histogram of the grayscale values of the frame 

32–36 RGB ratio Hist Histogram of the rgb-ratio color 

37–44 S Hist Histogram of the saturation coordinate of the HSV color space 

Faces 46 NFaces Number of detected faces in the frame 

47 PerFaces Average ratio of each face bounding box’s area to the whole frame area 

Motion 45 Gray Diff Mean absolute difference between two successive frames 

48 Tilt-Pan Measure A flow-based feature that measures tilting and panning movements 

49 Flow Mean Mag Average magnitude of the flow vectors 

50 Flow Std Mag Standard deviation of the magnitudes of the flow vectors 

Shot-related 51 Shot Estimated duration of the shot that contains the current frame 
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for the adopted features. This process leads to a nFrames × 52 fea-

ture matrix, where rows correspond to frames and columns to vi-

sual features. The final feature vector that represents the whole

film results from four statistics applied on the aforementioned fea-

ture sequences. In particular, the following statistics are computed

for each feature sequence: 

1. average value μ
2. standard deviation σ 2 

3. σ 2 

μ ratio 

4. average value of the top 10% highest feature values 

After the statistics calculation, each movie is represented by

a 208 (52 features × 4 statistics) feature vector. In the rest of

this section, we describe the adopted visual features along with

examples that demonstrate their ability to discriminate between

cinematic attributes and correspond to high-level similarities of

movies. 
.4.1. Color and illumination 

Adopted colors and color effects play a vital role in the direc-

or’s effort to enhance the mood or to punctuate a dramatic tone

n the movie. Color and illumination differentiations in cinematic

ovies are either due to the illustrated subjects and locations or to

n artistic process. In many cases, digital color correction is delib-

rately applied to convey a particular artistic perspective or tone. 

In order to model color and illumination the following visual

eatures are extracted: 

• RGB histograms : for every color coordinate (red, green and blue)

an 8-bin histogram is computed 

• Value histogram : an 8-bin histogram is computed on the

grayscale values of each frame, in order to model the distribu-

tion of the movie’s illumination 

• RGB ratio : a simple measure of each frame’s color saturation is

extracted as the ratio of the maximum RGB value to the average
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Fig. 7. Screenshots from four movies per most dominant color coefficient. Red was most dominant in the first set of movies, green was most dominant in movies 5–8 and 

blue was most dominant in the final set of movies. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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RGB value (at each pixel). Then, a 5-bin histogram of this new

image is extracted as the final feature (note: 5 bins instead of

8 because the RGB ratio is thresholded for significantly low and

high values, for the sake of normalization) 
• Saturation histogram : another color saturation feature set is ex-

tracted as the histogram of the S coordinate of the HSV color

space. 

Fig. 7 presents screenshots from typical movies with dominant

GB coordinates. Each row corresponds to a different movie. Rows

–4 correspond to movies which have red as a dominant color ( In

he Mood For Love, Lock, Stock and Two Smoking Barrels, Godfather

I and Django Unchained ), rows 5–8 to movies with green ( The Ma-
rix, The Matrix Reloaded,Pirates of the Caribbean: At World’s End and

ight Club ) and rows 9–12 to blue movies ( Finding Nemo, Star Wars

pisode V - The Empire Strikes Back, Aliens and Blade Runner ). In

ll cases, the selection of color corresponds to a intentional choice

ade by the producers to express either meaning (e.g. red is usu-

lly adopted to express violence, guilt and sin), mood or even a

articular era (warm colors are adopted in many movies set in

he 60s and 70s). In some cases, dominant colors express a par-

icular plot concept, for example in The Matrix sequel, the direc-

ors’ color pallet choice refers to the monochrome monitors used

n early computing, and is used to discriminate between the “real”

nd the Matrix world. 
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Fig. 8. Two of the darkest movies ( Sin City and Dr. Strangelove ) and the lightest movie ( Pi ). Pi is also the movie with the highest illuminance diversity. 

Fig. 9. Movies with the lowest ( Machinist ) and highest ( The Secrets in their Eyes ) saturation. Black and white movies are obviously excluded. 
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In Fig. 8 two movies with the highest average illumination and

one movie with the lowest illumination are presented. The particu-

lar examples’ values are directly extracted from the first bin of the

value histogram described above. Pi , which is the lightest movie

has also been found to have the highest illumination diversity (i.e.

the ratio of the darkest bin to the lightest bin). Indeed, the frames

from this movie have a characteristic black and white range of gray

values, quite close to a binarized image. Finally, Fig. 9 shows the

less and most saturated movies. Machinist is indeed a typical ex-

ample of a extremely desaturated movie. 

3.4.2. Motion 

Along with colors, motion is the most important visual charac-

teristic of a film and differentiates between different movie genres

and filming techniques. It can be either due to the subject’s move-

ment, therefore depends on the particular type of recorded action,

or due to the camera movement methodology. In the context of

this work we have implemented the following motion-related fea-

tures: 

Frame difference between two successive frames. This feature is sim-

ply computed as a mean absolute distance between the values of

two successive frames. 

Flow-based features. Optical flow ( Horn & Schunck, 1981 ) has been

widely used in motion estimation and video encoding. In this

work, we estimate flow vectors using a sparse iterative version of

the Lucas-Kanade optical flow in pyramids ( Bouguet, 2001 ). After

estimating the flow vectors, we move on to detect typical cam-

era movements. In particular, we focus on the following cinemato-

graphic techniques with regards to camera movement: 

• pan: the camera is rotated horizontally from a fixed position 

• tilt: the camera is rotated vertically from a fixed position 

• pedestal: the camera is moving on the vertical axis, without

change in the horizontal axis 
• truck: the camera is moving left or right (i.e. on the horizontal
axis), without change in its perpendicular location t
In all four methods, the perceived motion of the scene is sim-

lar: all points seem like moving in the same direction. Therefore,

e expect that the flow vectors computed over scenes that are

haracterized by such camera movements will share (almost) the

ame angle. Based on that idea, we compute the following fea-

ures: 

• pan-tilt-pedestal-truck (PTPT) confidence movement: for each

frame if F i , i = 1 , . . . , N are the magnitudes and φi , i = 1 , . . . , N

are the angles of the corresponding N flow vectors, we compute

the following measure: 
∑ N 

i =0 F i ∑ N 
i =0 [�(φi , ̄φ)] 2 

which is maximized for

high magnitude values (therefore high motion velocities) and

low deviation of the angles (which corresponds to near-parallel

flow vectors). Note that �( x, y ) is the angle difference between

angles x and y , and φ̄ is the mean value of φ. 
• the average value of the flow vector magnitudes: 1 

N 

∑ N 
i =0 F i 

• the deviation of the flow vector angles 1 
N 

∑ N 
i =0 [�(φi , φ̄)] 2 

Fig. 10 presents an example of a panning scene from the Cow-

oys and Aliens movie. The green vectors correspond to the ex-

racted flow vectors and it is obvious that they share (almost) the

ame angle and relatively high magnitudes. Also, the correspond-

ng PTPT confidence measure is 15 times higher than in other

cenes in the movie not characterized as pan-tilt-pedestal-truck.

herefore, the adopted ratio is high for this example, as intended. 

.4.3. Facial information 

The existence of faces and the way they are illustrated are

ather important characteristics in cinematography. Close-cuts to

haracters are often given to leading characters in films, in order to

ndicate their importance. In this work, we have have selected to

pply the widely used Viola-Jones method in order to detect faces

 Viola & Jones, 2004 ) in each frame of the film. Then, we calculate

he following features related to faces: (a) the number of detected

aces per frame and (b) the ratio of the face’s bounding box area

o the overall frame size. 
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Fig. 10. Example of computing the pan-tilt-pedestal-truck confidence movement feature. The frames are taken from a clear truck scene from the movie Cowboys and Aliens . 
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.4.4. Shot length information 

Film transition is an important procedure in cinematography

pplied in the post-production phase by combining shots and

cenes. Shots are sequences of successive video frames that have

een captured without interruption by a single camera. Shot tran-

ition is usually achieved through simple cuts, two different suc-

essive shots are played played one after another. Some directors

re known for using “long takes”, i.e. shots that last longer than

sual. The film Rope by Alfred Hitchcock is the first widely known

ovie that contained long takes. 

Shot change detection is a task that has been massively stud-

ed in video analysis ( Cotsaces, Nikolaidis, & Pitas, 2006; Hanjalic,

002 ). Our goal in the context of this work was not to extract a

ully accurate shot boundary detection estimate, but to calculate

n aggregate measure of shot length, also taking into account the

amera movement. Therefore, we have adopted three basic thresh-

lding rules applied on (a) the number of significantly changed

ixels between two successive grayscale frames (b) the overall mo-

ion based on the sum of magnitude of the flow vectors and (c) the

um of absolute differences of the gray value histograms between

wo successive frames. 

Fig. 11 illustrates the distribution of 11 movies in their average

x axis) and average top-10 values of their shot lengths (y axis).

ovies like Run Lola Run and Trainspotting share very low average
 t  
hot lengths and top 10% average shot lengths, since these movies

ave very abrupt cuts and fast camera movements. Angelopoulos’s

ovies ( The Suspended Step of the Stork ) are known for their slight-

st movements and changes, as well as long takes. 

.5. Metadata analysis 

Feature extraction from metadata is much more straightfor-

ard, since they only used as auxiliary information in our work,

hich focuses on low-level information. Utilizing publicly avail-

ble information regarding the cast, the directors and the genres

f the movies in our collection from IMDb , we create a categorical

ector for each movie, where each cell contains a binary value, 0

r 1, denoting relation between the movie and the corresponding

ag. These tags are the different actors, directors and movie genres

ound in our collection. Due to the small number of movies the fi-

al representation has approximately 630 unique features ( ≈ 500

ctors, ≈ 110 directors, ≈ 20 genres). 

.6. Content similarity and data fusion 

Having represented the movies as feature vectors, we can define

imilarity between these vectors to correspond to the similarity of

heir respective movies. We compute the cosine similarity between
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Fig. 11. Differences in average shot lengths between movies with fast and slow camera movements. The x-axis denotes the average shot length and the y-axis the average 

top-10 values of the shot lengths. 
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all movie pairs ( � m a , � m b ), in the different representation spaces: 

osSim ( � m a , � m b ) = 

�
 m a × �

 m b 

‖ 

�
 m a ‖ × ‖ 

�
 m b ‖ 

(2)

This results in a similarity matrix between movies for each

modality. In order to combine these content-specific similarities

we adopted a simple weighting scheme between the similarity ma-

trices, where the optimal weights for each modality are set after

extensive experimentation. 

3.7. Computational complexity and implementation 

All of the methods described above have been implemented

in the Python programming language, using open source libraries

for data handling, computer vision, signal analysis and machine

learning routines. Experiments have been conducted on a stan-

dard personal computer with an Intel(R) Core(TM) i7-5820K CPU @

3.30GHz processor and 16GB of RAM. The computational time re-

quired for each modality, along with the computational complexity

of the basic components of each modality, are described bellow: 

• text mining and topic modeling is achieved in just 0.05% of

the real movie’s duration. The theoretical complexity of LSI is

O(N 

2 ∗ K 

3 ) where N is the number of words in the collection

and K the number of topics. However, in recent years it has

been reduced to the SVD level ( Ding, Zhu, Cui, Zhou, & Tao,

2011; Holmes, Gray, & Isbell, 2007 ). LDA with gibbs sampling

on the other hand has a complexity of O(DKM) where D is

the number of documents-movies, K number of topics and M

the mean document length. Still, there also exist techniques

( Newman, Smyth, Welling, & Asuncion, 2008; Porteous et al.,

2008 ) for speeding up this procedure as well. Let us note here,

that these procedures need to run only once over all the sub-
title texts in our collection, as opposed to the per movie com-

plexity described below for the audio-visual domain. 
• audio and music analysis is performed in a 100 × realtime rate,

meaning that, on average, a movie’s audio content is analyzed

at a time equal to 1% of its duration. The most computation-

ally burdensome component of the audio analysis module is

feature extraction, and in particular the spectral computation.

Since FFT has been adopted to extract the spectral descriptors

of the audio signal, this complexity is theoretically equivalent

to O(n log n ) where n is the number of samples per window.

The duration of a movie is D = n ∗ N where N is the window

size, so the total complexity is O(D ∗ log n ) . 
• visual feature extraction is more computationally demanding,

and as described above, we only require to analyze 2 frames

per second. Given that, on average the analysis is performed in

a 6 × realtime rate (e.g. it takes almost 17 minutes to analyze

a movie of 2 hours). So the analysis of the visual domain is

achieved, on average, in 17% of the real movie’s duration. For

the visual domain the flow extraction is the most burdensome

and it has been proven ( Baker & Matthews, 2004 ) to be O(n 2 ∗
N + n 3 ) where n is a constant parameter of the algorithm and

N the total number of pixels. So the final complexity is linear

to the number of pixels N (and obviously linear to duration D )

resulting in O(D ∗ N) complexity for the analysis of each movie.

To sum up, in order to extract the whole set of features from a

ovie, almost 18% of its real duration is required. This means that

or a product-case dataset of, say, 10,0 0 0 movies the computational

ime required is almost 23 days, if all CPU kernels of a i7 processor

re used on a single computer. Equivalently, just 4 VMs would be

equired to compile the respective dataset of content movie simi-

arities in less than a week. 



K. Bougiatiotis, T. Giannakopoulos / Expert Systems With Applications 96 (2018) 86–102 97 

4

4

 

p  

m  

1  

M  

a  

M  

t  

t  

h

4

 

d  

t  

s  

2  

t  

w  

p  

n  

t  

f  

t  

e

5

 

t  

d  

a  

t  

r  

l  

g  

o

5

 

m  

m  

i  

e  

fi  

t  

s  

o  

d  

m  

e  

a  

T

 

t  

f  

m  

i  

a  

m  

t  

a  

w  

t  

t

 

d  

e  

o  

r  

d  

t  

f  

d  

t  

w  

s  

d  

i  

i  

b  

t

 

i  

m  

T  

t  

t  

v  

a  

f  

i  

v  

t  

l  

u  

fi  

d  

i  

s  

t

 

a  

d  

e  

p

5

 

p  

i  

p  

a  

p  

m  

t  
. Dataset 

.1. Data description 

In order to prove the ability of the low-level modalities to im-

rove the performance of the content similarity, compared to the

etadata information, we have compiled a real-world dataset of

60 movies. These movies have been selected from the Top 250

ovies 6 . Our purpose was to use movies that are widely known

nd therefore the quality of the results can be easily assessed.

oreover, the dataset is populated with different types of movies

o avoid metadata-specific bias, such as genre or casting. The sub-

itles were downloaded from an open source database 7 and were

and-checked for mistakes. 

.2. Ground-truth generation 

In order to evaluate the similarity rankings generated by the

ifferent modalities, we need a ground-truth similarity between

he movies of the dataset, against which we can pitch our re-

ults. Toward this end, we used the Tag-Genome ( Vig, Sen, & Riedl,

012 ) dataset to create a ground-truth similarity matrix between

he movies. Every movie is represented as a vector in a tag-space

ith ≈ 1100 unique tags. The tags can be a wide variety of words-

hrases such as adjectives (“funny”, “dark”, “adopted from book”),

ouns (“plane”, “fight”), metadata (“tarantino”, “oscar”) and so on,

hat act as descriptors for the movies. Having this representation

or each movie we obtained the ground-truth movie similarity ma-

rix, through calculation of the cosine similarity metric between

ach pair of movies, as already mentioned. 

. Experimental results 

In the context of experimental setup, our goal was to evaluate

he performance of the low-level modalities (when used either in-

ividually or in a fusion approach) in terms of content similarity

nd knowledge discovery. In this Section, we provide the following

ypes of experimental results: (a) a qualitative evaluation based on

ecommendation metrics and (b) a use case on how particular low-

evel features achieve differentiation between directors and movie

enres and (c) a movie network that demonstrates the usefulness

f our approach. 

.1. Recommendation evaluation 

Firstly, in order to rank the quality of the similarities for each

odel, we utilized the similarity rankings created by the afore-

entioned matrices. Specifically, for each movie we are interested

n the similarity ranking of the first two recommendations gen-

rated by each model. We calculate the median position, of the

rst and second recommendations over all movies, as ranked in

he ground truth similarity matrix. This information-retrieval mea-

ure conveys the similarity ranking accuracy for each model. More-

ver, in order to estimate a proportion of the “good” recommen-

ations each model provides , we also calculate a recall type of

easure. Specifically, it is the percentage of recommendations, av-

raged over all movies, that are in the Top 10 most similar movies,

ccording to the ground truth similarity ranking for each movie.

his indicates the sensitivity of each model. 

Tables 2 , 3 and 4 present the results for each individual model,

he fusion of each model with the metadata model and finally the

usion of specific models. Regarding Table 2 , we can see that the
6 http://www.imdb.com/chart/top . 
7 http://www.opensubtitles.org/en/search . 

m  
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r  

e

etadata-based model retrieves the best recommendations. This

s only natural, because the manual tags of the ground-truth data

re essentially a super-set of the metadata and semantically much

ore similar to them, than the features generated from the rest of

he models. Concerning the content based models, the best ones

re the subtitle-based models and especially the LDA model, but

ith minor differences to the other textual models. Finally, from

he low-level audio-visual models, video is by far the best of the

hree, followed by the audio and in the end the music model. 

In Table 3 , we can see the performance measures of all the in-

ividual models, fused with the metadata model . The values beside

ach model are the optimal weights for the specific fusion. More-

ver, we are also reporting here and in Table 4 the cases where the

esults are statistically significant better than the standalone meta-

ata model. The test results stem from the Wilcoxon signed-rank

est ( Wilcoxon, 1945 ), which is a non-parametric hypothesis test

or paired samples. It is the equivalent of the paired paired Stu-

ent’s t-test but without the assumption of normal distribution of

he samples. The Wilcoxon signed-rank test is chosen because we

ant to study the effects of recommendation over a set of movies,

o the per movie recommendations should be paired between two

ifferent models. Also, the lar ger the difference between the rank-

ngs of the pair (between the two models on a specific movie that

s), the more weight it gains in the test, utilizing the differences

oth in direction and mangitude for the per-movie recommenda-

ions pair ( Siegal, 1956 ). 

Examining the table, the most important conclusion is that fus-

ng with any of the low-level modalities boosts the performance of the

etadata model, for the 1st recommendation ranking, almost by 50%.

his is probably the most interesting outcome of this experimen-

ation, considering that the individual models perform worse than

he metadata model, consequently meaning that there is much di-

ersity in the recommendations given by the individual modalities

nd the metadata model, for most of the movies. In more detail,

using with the subtitle-based models gives better results, but that

s not always the case for all the measures, (e.g. fusion with the

ideo model performs better in the top 10% of 1st recommenda-

ion measure). Moreover, it is important that even fusing with the

ess accurate individual models, such as audio and music, still gives

s a boost in performance over the standalone metadata model. A

nal interesting note, is that in the case of fusing audio and meta-

ata, the similarity matrix of audio plays the most important role

n the fusion with a 70% weight factor, as opposed to the rest fu-

ion weights where the metadata matrix has the highest weighting

erm. 

Finally, we also tried to fuse more than two models together

nd some of the best combinations are presented in Table 4 . We

id not discover any boost in the performance of the fusion mod-

ls presented in Table 3 , nor a significant decrease over the best

erforming model from Table 3 . 

.2. Modality features differentiation per genre and director 

In order to gain more insight, regarding the discrimination ca-

abilities offered by each individual model, their complementar-

ty with the metadata model and their possible specialization in

articular types of movies, we also implemented two simple genre

nd director specific tasks. Specifically, we firstly group the movies,

er genre and according to the director of the film. Then, for each

ovie in our collection we retrieved the recommendations from

he fusion models in Table 3 . Based on the returned recommended

ovies, we examined which belonged to the same genre (or direc-

or) as the query movie. Finally we computed the average ratio of

elevant to the total number of retrieved movies (with regards to

ither genre or director). 

http://www.imdb.com/chart/top
http://www.opensubtitles.org/en/search
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Table 2 

Performance measures for individual modalities. As expected, the metadata-based content similarity achieves the best performance, since it is 

based on manually-provided content tags. 

Modality Model Median ranking 1st Rec Top 10% of 1st Rec Median ranking 2nd Rec Top 10% of 2nd Rec 

Text (subtitles) 

tf-idf 18.0 40.0 26.5 28.1 

LSI 17.0 41.3 22.5 33.0 

LDA 15.5 43.0 24.0 33.75 

Audio visual 

Music (M) 55.5 8.8 61.0 10.0 

Audio (A) 51.0 11.9 53.0 10.6 

Video (V) 47.0 20.6 42.0 16.9 

Metadata Metadata (MD) 8.0 55.6 9.0 53.1 

Table 3 

Performance measures for all individual modalities fused with metadata. In all cases, the fusion performance is boosted 

compared to the metadata accuracy, almost 50%. 

Model Median ranking 1st Rec Top 10% of 1st Rec Median ranking 2nd Rec Top 10% of 2nd Rec 

tf-idf (0.28) 3.0 ∗∗ 63.8 ∗∗∗ 9.5 50.0 

LSI (0.18) 3.0 ∗∗ 64.4 ∗∗∗ 9.0 53.1 

LDA (0.11) 4.5 - 60.0 - 10.5 48.1 

Music (0.14) 5.0 - 61.3 ∗ 9.5 50.0 

Audio (0.70) 5.0 ∗∗∗ 57.5 - 12.0 45.6 

Video (0.13) 4.0 - 66.3 ∗∗∗ 10.5 48.8 

Statistical significance levels ∗∗∗ p < . 01 , ∗∗ p < . 05 , ∗ p < . 1 , - p > . 1 

Table 4 

Performance measures for fusion between (a) all low-level modalities (audio, music, video) (b) all low-level modalities with text 

(c) all low-level modalities (audio,music,video) with metadata and (d) all content modalities (audio,music,video,text) with meta- 

data. 

Model Median ranking 1st Rec Top 10% of 1st Rec Median ranking 2nd Rec Top 10% of 2nd Rec 

M, A, V 

0.06, 0.84, 0.1 32.0 25.0 51.0 15 

LSI, M, A, V 

0.06, 0.62, 0.12, 0.20 10.0 48.1 17.0 31.9 

M, A, V, MD 

0.13, 0.17, 0.05, 0.56 4.0 - 66.3 ∗∗∗ 11.5 41.3 

LSI, M, A, V, MD 

0.12, 0.06, 0.13, 0.1, 0.59 4.0 ∗∗ 65.6 ∗∗∗ 9.5 50.0 

Statistical significance levels ∗∗∗ p < . 01 , ∗∗ p < . 05 , ∗ p < . 1 , - p > . 1 
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The core idea of these tasks, is to gain an initial intuition re-

garding some very interesting questions about the way humans

perceive similarity between movies and what different modalities

are involved in this perception. This is paramount, in order for us

to gain insights about whether there are specific modalities more

capable of dealing with specific genres, or whether some directors

can be identified based on specific low-level features provided by

a modality etc. 

Before proceeding with the results, since we mainly focused on

the per genre grouping of the movies task, the following analysis

will be heavily centered around that task. In Fig. 12 we see the dis-

tribution of movies in the different genres found in our collection.

There are in total 21 different genres and each movie could belong

in more than one genre, which is also the most common case. The

results are shown for all models and genres in Fig. 13 . For each

different genre and model, we can see the percentage of recom-

mendations that belonged to the same genre as the queried movie,

averaged across all movies. As a reminder, the individual models

are fused with the metadata according to the weights of Table 3 .

The first 3 bars, colored in shades of blue , in each genre, are

the models based on the textual modalites, followed by the video

model in yellow and the music ( orange ), audio ( red ) models next

and finally the individual metadata model ( brown ). We have omit-

ted Film Noir, Musical and Sport genres, because we did not have

enough movies to get a sound measurement of the same-genre

retrieval ratio. Examining the figure leads to many interesting

observations: 
m  
1. Fusion with textual models outperforms the individual meta-

data model in Romance (All models), History (LSI), Sci-fi (LDA)

and Actionc (tf-idf) among others. This substantiates the logi-

cal intuition that same-genre movies can be thematically con-

nected and may exhibit the same vocabulary more or less, for

specific genres; Romance would be an obvious example, as all

textual fusion models outperform the metadata model. 

2. The video fusion model outperforms the metadata model in

many genres, such as Sci-fi, Animation, Adventure and others.

Animation is a striking example one could think of, where in-

formation from visual features could be indispensable in order

to find similar movies due to their particularities. Adventure and

Action are other such cases where the fast transition of scenes

and flow of movement can be identified using visual cues. 

3. The music fusion model achieves noticeably better results in

Western genre, probably due to the idiosyncratic musical pieces

used in such films. The same stands for the audio fusion model

for this genre, as well as History and Comedy films among oth-

ers. 

Ultimately, the subtitles-based fusion models outperform the

etadata model in 13 out of 21 genres, the video fusion model in

 genres, while the sound-based models, music and audio, perform

etter in 2 and 4 genres, respectively. 

Regarding the director task, we followed the same method-

logy focusing on the top-10 most prolific directors, regarding

ovie population as distributed in our collection, in order to have
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Fig. 12. Distribution of movies in the different genres. 

Fig. 13. Averaged percentage of same-genre recommendations across all individual models fused with the metadata model. 

m  

w  

m  

e  

m  

l

 

 

 

 

 

 

s  

d  

s  

t  

d  

t  

t

5

 

w  

l  

a  

F

8 http://users.iit.demokritos.gr/ ∼bogas.ko/movies/examples/movies _ network.html . 
ore robust results. However, with very few exceptions the results

ere not indicative of significant differentiations between group of

ovies directed by the same person through the fusion of differ-

nt models. A brief summary of those exceptions, where the fused

odels perform better that the metadata model, would be as fol-

ows: 

• textual fusion models perform better on movies directed from

Alfred Hitchcock and Quentin Tarantino than the individual meta-

data model. 
• the visual fusion model performs better with movies by Quentin

Tarantino and Steven Spielberg . 
• finally, music fusion model in movies by Kubrick while the

audio fusion model produces better results in movies by Robert

Zemeckis . 

However, the above results should be taken with the grain of

alt because of the small amount of movies by each director, the
istribution of those movies over genres that could affect the re-

ults (we may be essentially differentiating between genres, while

hinking we differentiate between directors because of the genre-

irector correlation) and the small differences in performance be-

ween the fusion and individual models (further accentuated by

he limited dataset). 

.3. Movie network demo 

Finally, in order to demonstrate the usefulness of our approach

ith the multimodal representations of the movies we offer an on-

ine interactive demo, 8 where the movies have been represented as

 network graph. A static screenshot of the demo can be seen in

ig. 14 . 

http://users.iit.demokritos.gr/~bogas.ko/movies/examples/movies_network.html
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Fig. 14. Instance of the Movie Similarity Network Demo. Nodes are movies, links from each node represent similarity and the color of the node is according to the community 

it belongs to. 
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Each node is a movie from our dataset and the links between

the movies denote the similarities as found by our models. The

node size corresponds to the score of the movie according to

IMDb 9 and the node is colored according to which community it

belongs to. The communities in the graph are found using the

Louvain method based on modularity maximization ( Blondel, Guil-

laume, Lambiotte, & Lefebvre, 2008 ). It is very interesting to see

the differences in communities found in these similarity networks

produced by the different modalities. The user can use different

kind of filters, based on metadata, content and communities as

found by each representation, in order to gain insights about movie

relations through different aspects. This per model movie similar-

ity browsing can give us insights about the differentiations and

strengths of each modality, as for example one can see a cluster of

movies in the video model that mainly consists of black-and-white

films (dark brown community). 

5.4. Discussion 

In this paper, we examined the ability of all modalities (tex-

tual, auditory and visual) involved in a cinematic movie to pro-

vide content similarity measures, in the context of a movie recom-

mendation application. Moreover, we validated the basic premise

of our research regarding the latent connection between low-level

features of movies and human-level semantics of similarity. 

In more detail, we’ve shown the usefulness of raw features

when fused together with metadata to provide better recommen-

dation of movies. Regarding the textual models, it has been proven

that the LDA performs better than LSI and tf-idf . Moreover, LDA of-

fers us a topical representation of the movies that is much closer to

human understanding and allows for better interaction and brows-

ing of the movies. However, when fused with metadata or other
9 http://www.imdb.com/ . 

f  

d  
odels LSI seems to be the best choice, which is also much less

ime consuming than LDA . 

Regarding the audio - visual domain, supervised and unsuper-

ised methods for extracting information have also been proposed.

n particular, in the audio domain pretrained classifiers have been

sed to extract statistics about the existence of particular audio

lasses and musical genres. In the visual domain, we have ex-

racted some characteristics that are associated with particular

lmmaking techniques (e.g. camera movement, shot lengths, etc).

xperiments have proven that the visual cue is more informative

ith respect to the movie content similarity than audio and music . 

We’ve also shown the differentiation of results when using dif-

erent data modalities in a variety of tasks. As noted, the visual

omponent of a movie can be of great value when searching for

ovies based on specific cinematographic techniques. Also, the

udio-music elements of the movie can be telling in terms of the

enre and the thematic of the movie. 

This novel way of representing movies, as multimodal data

ources, opens up new horizons in the ways we interact with

ovies, allowing as to tap into the latent knowledge found in

hese representations. This can pave the path for more holis-

ic approaches in movies recommendation, as showcased in the

emo of the network of movies, and address a series of prob-

ems in recommender systems. For example, the presented ap-

roach would be invaluable when dealing with the cold start prob-

em ( Schein, Popescul, Ungar, & Pennock, 2002 ) and recently pre-

iered movies must be associated with existing ones, because this

pproach is not bounded by the perception of similarity and the

atings of the users. 

However, the presented work also has some limitations. Firstly,

he results presented here are only based on a small dataset

f movies. In order to further validate the insights gained

rom this work, experiments on a larger scale should be con-

ucted. This would also help defining a strict cross-validation

http://www.imdb.com/
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cheme and experiment with the efficiency of this approach when

ddressing other important matters of recommender systems

 Khusro, Ali, & Ullah, 2016 ). Also, more consideration should be

ut on the way the ground truth similarity is generated. Firstly,

t is conceptually related to the metadata features, unfavorably fa-

oring the metadata model when comparing results. Moreover, it

s not trivial to define actual similarity between movies. Do ratings

f movies generated by users implicitly express this similarity? Or

hould an explicit process of manual linking of similar movies take

lace? This is a very important matter, as it heavily affects the ex-

erimental results. 

. Conclusions and future work 

The results presented in this paper verify the core idea of

dopting multimodal information to boost the performance of

ovie recommendation systems. The basic outcomes of our re-

earch are the following: 

1. The most important and promising outcome of the experimen-

tation is that low-level feature models exploit latent informa-

tion that boosts the performance of human-generated information

models (metadata) at almost a 50% ratio, despite the fact that

their individual performances are much lower . This implies that

the diversity between the decisions from different modalities is

high. These results prove that the proposed low-level features

can be adopted in the context of a multimodal content-based

recommendation system. However, fusing all modalities did not

further improve the performance of the content similarity ap-

proach: this demonstrates that in future work, combining more

than two modalities should be handled using more sophisti-

cated approaches (some ideas are presented in detail below) 

2. The workflow for a complete methodology for automatic sim-

ilarity extraction for movies based on low-level features has

been described and evaluated. Detailed examples on how

modality-specific features discriminate between different cine-

matographic attributes are presented. In addition, a detailed ex-

perimentation on content similarity has been conducted, based

on a dataset of 160 movies. 

3. Finally, we have showcased examples where specific modalities

seem to be good at differentiating between separate genres of

movies, and to a lesser extend different directors. This implies

that different modalities and, maybe, specifically a selection of

low-level features from those modalities, can capture high-level

concepts of similarity or cinematographic styles, as defined by

humans. 

At the same time, they inspire several future (and ongoing) re-

earch directions. In particular: 

• Scalability: We have already discussed that the proposed ap-

proaches require a proportion (less than 

1 
5 ) of the real movie

duration to extract multimodal knowledge. They can be there-

fore applied to larger datasets in order to simulate their ability

to perform on real movie recommendation systems. 
• With regards to the particular low-level modality analysis

methods: 

– In the text analysis module, other topic methods could be

evaluated such as Hierarchical Dirichlet Processes ( Teh, Jor-

dan, Beal, & Blei, 2006 ). 

– Regarding the audio domain, more detailed class represen-

tations will be added as pretrained supervised models, in

order to cover more audio classes and musical genres. How-

ever, our goal in this task is to also include unsupervised

similarity extraction methods, that discover content simi-

larities based on clustering of the audio feature distribu-

tions. Additionally, temporal methods (e.g. HMM or LSTM
approaches) will be used to also model the way features and

classes change over time. 

– Similarly, in the visual domain unsupervised similarity ex-

traction and temporal modeling will be adopted. Addition-

ally, we will focus on extracting higher level information

from all visual cues. Particularly, regarding face-related an-

alytics, we are already building methods that discriminate

between different types of close cuts (medium, extreme,

lean-ins, etc). Also, face clustering will also be implemented

to achieve a more detailed representation of the existence

of faces, so that the features will answer questions like: how

many faces appear in the movie or which are the most dom-

inant faces. Regarding the camera movement features, we

will generalize the existing method to also discriminate be-

tween different types of camera movement (panning, zoom-

ing, truck, etc), leading to more detailed high-level and dis-

tinctive filmmaking styles. Finally, more accurate shot length

extraction are being implemented, while we also focus on

achieving classification between different types of shot tran-

sitions: simple cuts, wipes, fade-ins, fade-outs, etc. 
• Regarding multimodal fusion we are already examining more

sophisticated fusion schemes that also take into consideration

temporal dependencies and correlations between the different

modalities. 
• Finally, in order to achieve a fully functional and complete rec-

ommendation system, knowledge with added user preferences

will be included by adopting collaborative filtering methodolo-

gies. In addition, user clustering and profiling information will

be correlated with low-level knowledge from multimodal infor-

mation, in order to discover if different groups of user prefer-

ences correlate better with different modalities (e.g. if certain

people choose the movies based on the visual filmmaking char-

acteristics or the topic, etc.) 
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